A comparative study of univariate time-series methods for sales forecasting
نویسندگان
چکیده
Firms use time-series forecasting methods to predict sales. However, it is still a question which method forecaster best, if only single forecast needed. This study investigates and evaluates different sales methods: multiplicative Holt-Winters (HW), additive HW, seasonal auto regressive integrated moving average (SARIMA) [a variant of (ARIMA)], long short-term memory (LSTM) recurrent neural networks the Prophet by Facebook on 32 univariate time-series. The data used taken from Time Series Data Library (TSDL). With respect root mean square error (RMSE) evaluation metric, we find that with SARIMA offers best performance, average, relative other compared methods. To support findings, both mathematical economic drivers observed performance are provided.
منابع مشابه
Time Series Sales Forecasting
The ability to accurately forecast data is highly desirable in a wide variety of fields such as sales, stocks, sports performance, and natural phenomena. Presented here is a study of several time series forecasting methods applied to retail sales data, comprising weekly sales figures from various Walmart department stores across the United States over a period of approximately 2 and a half year...
متن کاملForecasting electric vehicles sales with univariate and multivariate time series models: The case of China
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonabl...
متن کاملA Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center
Predictions of call center arrivals are a key input to staff scheduling models. It is, therefore, surprising that simplistic forecasting methods dominate practice, and that the research literature on forecasting arrivals is so small. In this paper, we evaluate univariate time series methods for forecasting intraday arrivals for lead times from one half-hour ahead to two weeks ahead. We analyze ...
متن کاملA Comparative Analysis of Univariate Time Series Methods for Estimating and Forecasting Daily Spam in United States
Spam has been one of the most difficult problems to be addressed since the invention of Internet. Outbound spam can reflect the information security level of an organization as most spam emails are generated by compromised computers. Understanding the trend of outbound spam can help organizations adopt proactive policies and measures toward a more informed decision on resource allocation in ter...
متن کاملComparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of business and data analytics
سال: 2022
ISSN: ['2515-9100', '2515-9119']
DOI: https://doi.org/10.1504/ijbda.2022.126806